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 Chapter 1 PREVIEW 
Regression is a procedure which selects, from a certain class of functions, the one which 

best fits a given set of empirical data (usually presented as a table of x and y values with, 

inevitably, some random component). The ’independent’ variable x is usually called the 

regressor (there may be one or more of these), the ’dependent’ variable y is the response 

variable.. The random components (called residuals) are usually assumed normally 

distributed, with the same σ and independent of each other. 

The class from which the functions are selected (the model) is usually one of the 

following types: 

1. a linear function of x (i.e. y = a+bx) - simple (univariate) linear regression, 

2. a linear function of x1, x2, ... xk - multiple (multivariate) linear regression, 

3. a polynomial function of x - polynomial regression, 

4. any other type of function, with one or more parameters (e.g. y = aebx) nonlinear 

regression. 

The coefficients (parameters) of these models are called regression coefficients 

(parameters). Our main task is going to be to find good estimators of the regression 

coefficients (they should have correct expected values and variances as small as 

possible), to be used for predicting values of y when new observations are taken. 

Some of the related issues are: 

1. How do know (can we test) whether the relationship (between y and x) is truly 

linear? What if it is not (we have switch to either polynomial or nonlinear model). 

2. Similarly, are the residuals truly normal and independent of each other? Howdo 

we fix the procedure if the answer is NO. 

3. Even when they are normal and independent, what if their variance changes with 

x (here, we have to do the so called weighted regression). 

4. Even when all the assumptions are properly met: In the multivariate case with 

many independent variables, do we really need them all to make a good prediction 

about y ? And, if it is possible to reduce them (usually substantially) to a smaller 

subset, how do we do it (i.e. selecting the best five, say).? 

6  



 

 Chapter 2  

USING MAPLE 
Basics 
Typing an expression (following Maple’s > prompt) results in evaluating it. When the 

expression contains only integers (no decimal point), one gets the exact (rational) 

answer, as soon as at least one number in the expression is real (with a decimal point), 

the result is real (rounded off to 10 significant digits). The symbols ∗, / and ˆ facilitate 

multiplication, division and exponentiation, respectively. Note that each line of your 

input has to end with a semicolon: 

3); 

The result of any computation can be stored under a name (which you make up, 

rather arbitrarily), and used in any subsequent expression. Maple then remembers the 

value, until the end of your session, or till you deliberately replace it with a new value. 

Note that this (giving a name to a result) is achieved by typing the name, followed by a 

colon and the equal sign (a group of two symbols, representing a single operation), 

followed by the actual expression to be stored: 

> a := (3.0 + 4) ∗ (2 − 6) + 2/3 − 4/5; a := 

−28.13333333 

> a/7 + 9; 

4.98095238 

> a := 14/6; 

a := 73 ; 

> a/7 + 9; 

a := 283 ; 

(from now on, we will omit the > prompt from our examples, showing only what we 

have to type). 

Maple can also handle the usual functions such as sin, cos, tan, arcsin, arccos, arctan, 

exp, ln, sqrt, etc. All angles are always measured in radians. sin(3.);sqrt(8); 

.  

We can also define our own functions by: 
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f := x− > xˆ2; 

8 

f := x → x2 

f(3); 

9 

where f is an arbitrary name. 

Lists and Loops 
Maple can store, under a single name, a whole list of values, thus: a := 

[3/2, 5, sqrt(3), 7]; 

 
The individual elements of a list can be referenced by indexing (and used in 

computing another expression): 

a[2] ∗ 4; 

20 

One can add elements of a list by the following command (as Maple calls them): 

sum(’a[i]’,’i’= 1..4); 

272 + √3 

One can convert the last answer to its decimal form by: 

evalf(%); 

15.23205081 

Note that the % symbol always refers to the previous expression. 

Similarly to sum, one can also compute product of elements of a list. 

To subtract say 3 from each element of the list a, redefining a correspondingly, can 

be achieved by: 

for i from 1 to 4 do a[i] := a[i] − 3 end do: 

Note that terminating a statement by : instead of the usual ; will prevent Maple from 

printing the four results computed in the process (we may not need to see them 

individually). Also note that, upon completion of this statement, i will have the value of 

5 (any information i had contained previously will have been destroyed)! 

We can easily verify that the individual elements of our a list have been updated 

accordingly: 

a[2]; 

2 

We may also create a list using the following approach: 

b := [seq(2ˆi,i = 1..6)]; 



 

b := [2, 4, 8, 16, 32, 64]; 

Variables and Polynomials 
If a symbol, such as for example x, has not been assigned a specific value, Maple 

considers it a variable. We may then define a to be a polynomial in x, thus: 

a := 3 − 2 ∗ x + 4 ∗ xˆ2; 

a := 3 − 2x + 4x2 

A polynomial can be differentiated diff(a, x); 

−2 + 8x 

integrated from, say, 0 to 3 int(a,x = 

0..3); 

36 

or plotted, for a certain range of x values plot(a,x = 

0..3); 

We can also evaluate it, substituting a specific number for x (there are actually two 

ways of doing this): 

subs(x = 3,a); eval(a, x = 3); 

33 

33 

We can also multiply two polynomials (in our example, we will multiply a by itself), 

but to convert to a regular polynomial form, we nee to expand the answer: 

a ∗ a; expand(%); 

(3 − 2x + 4x2)2 



9 

9 − 12x + 28x2 − 16x3 + 16x4 

10 

Procedures 
If some specific computation (consisting, potentially, of several steps) is to be done, 

more than once (e.g. we would like to be able to raise each element of a list of values to 

a given power), we need first to design the corresponding procedure (effectively a 

simple computer program), for example: 

RAISETO := proc(L, N); local K, n, i; K := L; n := nops(L); for i from 1 to n 

do K[i] := K[i]ˆN end do; K end proc: 

where RAISETO is an arbitrary name of the procedure, L and N are arbitrary names 

of its arguments (also called parameters), the first for the list and the second for the 

exponent, K, n and i are auxiliary names to be used in the actual computation (since they 

are local, they will not interfere with any such names used outside the procedure). First 

we copy L into K (Maple does not like it if we try to modify L directly) and find its 

length n (by the nops command). Then, we raise each element K to the power of N, and 

return (the last expression of the procedure) the modified list. We can organize the 

procedure into several lines by using Shift-Enter (to move to the next line). 

We can then use the procedure as follows: 

1); 

Matrix Algebra 
We can define a matrix by: a := 

matrix(2, 2, [1, 2, 3, 4]): 

where 2, 2 specifies its dimensions (number of rows and columns, respectively), 

followed by the list of its elements (row-wise). 

We can multiply two matrices (here, we multiply a by itself) by 

evalm(a &∗ a): 

Note that we have to replace the usual ∗ by &∗. Similarly, we can add and subtract 

(using + and −)a, and raiseby a vector (of matching length), which can be entereda to 

any positive integer power (using ˆ). 

We can also multiply as 

a list: 

evalm(a &∗ [2, 5]): 



 

Note that reversing the order of a and [2, 5] yields a different answer. 

We can also compute the transpose and inverse of a, but first we must ask Maple to 

make these commands available by: with(linalg): 

We can then perform the required operation by 

transpose(a): etc. 

Similarly, to solve a set of linear equation with a being the matrix of coefficients and 

[2, 3] the right hand side vector, we do: linsolve(a, [2, 3]): 

Other useful commands: 

a := randmatrix(5, 5): creates a matrix of specified dimensions with 

random elements, 

augument(a, [6, 2, 7, 1, 0]): attaches the list, making it an extra 

(last) column of a, 

submatrix(a, 2..4, 1..2): 

reduces a to a 3 by 2 submatrix, keeping only rows 2, 3 and 4, and columns 1 

and 2, 

swaprow(a, 2, 5): interchanges 

rows 2 and 5 of a, 

addrow(a, 2, 4, 2/3): 

adds row 2 multiplied by  to row 4 of a. 

To recall the proper syntax of a command, one can always type: 

?addrow 

to get its whole-page description, usually with examples. 

Plots 
Plotting a specific function (or several functions) is easy (as we have already seen): 

plot({sin(x),x − xˆ3/6},x = 0..Pi/2): 

One can also plot a scattergram of individual points (it is first necessary to ask Maple 

to make to corresponding routine available, as follows: 

with(plots): 

pointplot([[0,2],[1,−3],[3,0],[4,1],[7,−2]]); 

Note that the argument was a list of pairs of x-y values (each pair itself enclosed in 

brackets). 

We can combine any two such plots (usually a scattergram of points together with a 

fitted polynomial) by: pic1 := pointplot([seq([i/5, sin(i/5)],i = 1..7)]): pic2 :=plot(sin(x),x 

= 0..1.5): display(pic1,pic2): 

12  
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 Chapter 3 SIMPLE REGRESSION 
The model is 

 yi = β0 + β1xi + εi (3.1) 

where i = 1, 2,...,n, making the following assumptions: 

1. The values of x are measured ’exactly’, with no random error. This is usually so 

when we can choose them at will. 

2. The εi are normally distributed, independent of each other (uncorrelated), having 

the expected value of 0 and variance equal to σ2 (the same for each of them, 

regardless of the value of xi). Note that the actual value of σ is usually not known. 

The two regression coefficients are called the slope and intercept. Their actual values 

are also unknown, and need to be estimated using the empirical data at hand. 

To find such estimators, we use the 

Maximum Likelihood Method 
which is almost always the best tool for this kind of task. It guarantees to yield estimators 

which are asymptotically unbiased, having the smallest possible variance. It works as 

follows: 

1. We write down the joint probability density function of the yi’s (note that these 

are random variables). 

2. Considering it a function of the parameters (β0, β1 and σ in this case) only (i.e. 

’freezing’ the yi’s at their observed values), we maximize it, using the usual 

techniques. The values of β0, β1 and σ to yield the maximum value of the actual 

estimators (note that they will be functions of xbi andb yi). b this so called 

Likelihood function (usually denoted by β0, β1 and σ) are 

Note that instead of maximizing the likelihood function itself, we may choose to 

maximize its logarithm (which must yield the same βb0, βb1 and σb). 

Least-Squares Technique 
In our case, the Likelihood function is: 

 

and its logarithm: 
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0 1 

b 
β 1 = 

n 
n P 

i =1 
x i y i − 

n P 

i =1 
x i · 

n P 

i =1 
y i 

n 
n P 

i =1 
x 
2 
i − 

µ 
n P 

i =1 
x i 

¶ 2 = 

n P 

i =1 
( x i − x )( y i − y ) 

n P 

i =1 
( x i − x ) 

2 
≡ 
S xy 

S xx 

β 

To maximize this expression, we 

first differentiate it with respect 

to σ, and make the result equal to 

zero. This yields: 

where βb0 and βb1 are the values of which minimize 

 i=1 − 0 − 1 

namely the sum of squares of the vertical deviations of the yi values from the fitted 

straight line (this gives the technique its name). 

and β1, and set each of the two answers to zero. This yields:b b To find β0 and β1, we 

have to differentiate SS, separately, with respect to β0 

n 

and 

 

or equivalently, the following so called 

Normal equations 

 

They can be solved easily for β0 and β1 (at this point we can start calling them βb and βb 

): 

and 

 b0 = y − βb1x (3.2) 

meaning that the regression line passes through the (x,y) point, where 
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and variables, their joint distribution is thus of the bivariate 

normal type.b b Each β0 and β1 is clearly a linear combination of 

normally distributed random 

> x := [77,76,75,24,1,20,2,50,48,14,66,45,12,37]: 

> y := [338,313,333,121,41,95,44,212,232,68,283,209,102,159]: 

> xbar := sum(’x[i]’,’i = 1..14’)/14.: > 

ybar := sum(’y[i]’,’i = 1..14’)/14.: 

>> SxxSxy :=:= sumsum((’’((xx[[ii]]−−xbarxbar))ˆ∗2(’,y’[ii]= 1− ybar..14’)):’,’i = 1..14’): 

> β1 := Sxy/Sxx; β1 := 

3.861296955; 

; 

> with(plots): 

> pl1 := pointplot([seq([x[i],y[i]],i = 1..14)]): 

>>displaypl2 := plot(pl1(,plβ0 +2);β1 ∗ x,x = 0..80): 

Statistical Properties of the three Estimators 
First, we should realize that it is the yi (not xi) which are random, due to the εi term in 

(3.1) - both β0 and β1 are also fixed, albeit unknown parameters. Clearly then 

E(yi − y) = β0 + β1xi − (β0 + β1x) = β1 (xi − x) 

which implies 

 we Similarly, since

get 
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Both  β0 and β1 are 

thus , respectively. 

 
From (3.2) we get 

 β1´  Var³β

We already have a formula for Var b1 , 

and 

Cov  

(uncorrelated). Putting these together yields: 

The covariance 

between, and their correla- 

tion coefficient is 

Both variance formulas contain σ2, which, in most situations, must be replaced by 

its ML estimator 

b b 

     

b 
β 1 = 

n P 

i =1 
( x i − x )( y i − y ) 

n P 

i =1 
( x i − x ) 

2 
≡ 

n P 

i =1 
( x i − x ) y i 

n P 

i =1 
( x i − x ) 

2 
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where the numerator debfines the so called 

residual (error) sum of squares. It can be 

rewritten in the following form (replacing  

Based on (3.1) and (from now on, we have to be 

very careful to differentiate between, etc.), we get 

 E(Syy) = 
E

( i 1 xi − x) + (εi − ε)]2) = β2
1 Sxx + σ2(n − 1) 

=1 

(the last term was derived in MATH 2F96). Furthermore, 

 E³β  

Combining the two, we get 

E(SSE) = 
σ2(n − 2) 

Later on, we will be able to prove that  has the χ2 distribution with n − 2 

degrees of freedom. It is also independent of each β0 and β1. 

 This means that there is a slight bias in the σb2
m estimator ofb b σ2 (even though 

the 
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bias disappears in the n →∞fix this by delimit - such estimators are calledfining a new, 

fully unbiasedasymptotically unbiased). We can easily 

SS (the so called mean square) to 

be used instead of from now on. All of this implies that both b 

and 

(3.3) 

either to construct the so calledhave the Student t distribution with n − 2 degrees of 

freedom. This can be usedfor either β0 or β1, or to 

confidence interval 

test any hypothesis concerning β0 or β1. 

The corresponding Maple commands (to compute SSE, MSE, and the two standard 

errors - denominators of the last two formulas) are: 

>> SSESyy :=sum((y[i] −ˆ2ybar∗ Sxx)ˆ2:,i = 1..14): 

> MSE:= Syy − β121: 

:= SSE/ 

> se1 :=sqrt(MSE/Sxx): 

> se2 :=sqrt(MSE/(1/14 + xbarˆ2/Sxx)): 

Confidence Intervals 
To construct a confidence interval for an unknown parameter, we first choose a so called 

confidence level 1 − α (the usual choice is to make it equal to 95does%, with α = 0.05). 

This will be the probability of constructing an interval which contain the true value of 

the parameter. 

Regression coefficients 

Knowing that (3.3) has the tn−2 distribution, we must then find two values (called critical) 

such that the probability of (3.3) falling inside the corresponding interval (between the 
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two values) is 1 
− α. 

At the same time, we would like to have the interval as short as 

possible. This means that we will be choosing the critical values symmetrically around 

0; the positive one will equal to tα
2 ,n−2, the negative one to 

−
t 

distribution) - these critical values are widely tabulated. We can alsoα2 ,n−2 (the first index 

now refers to the area of the remaining tailfind themof the with the help of Maple, by: 

>with(stats): 

> statevalf[icdf,studentst[12]](0.975); where icdf stands for ’inverse cumulative 

density function’ (’cumulative density function’ being a peculiar name for ’distribution 

function’), and 0.975 is the value of (leaving  for the tail). 

The statement that (3.3) falls in the interval between the two critical values of tn−2 is 

equivalent (solve the corresponding equation for β1) to saying that the value of β1 is in 

the following range b 

which is our (1 − α) · 100% confidence interval. 100% right 

The only trouble is that, when we make that claim, we are either or 100% wrong, 

since β1 is not a random variable. The probability of ’hitting’ the correct value was in 

constructing the interval (which each of us will do differently, if we use independent 

samples). This is why we use the word confidence instead of probability (we claim, with 

the (1 − α) · 100% confidence, that the exact value of β1 is somewhere inside the 

constructed interval). 

Similarly, we can construct a 1 − α level-of-confidence interval for βb0, thus: 

b 

two (with a specibfic level of conb fidence) is more complicated (one has to construct 

Note that, since β0 and β1 are not independent, making a joint statement about the a 

confidence ellipse, to make it correct). 

Residual variance 

Constructing a 1−α confidence interval for σ2 is a touch more complicated. Since  

has the χ2
n−2 distribution, we must first find the corresponding two critical values. 

Unfortunately, the χ2 distribution is not symmetric, so for these two we have to take

 and χ2
1−α2 ,n−2. Clearly, the probability of a χ2

n−2 random variable falling between 

the two values equals 1 − α. The resulting interval may not be the shortest of all these, 

but we are obviously quite close to the right solution; furthermore, the choice of how to 

divide α between the two tails remains simple and logical. 

 Solving for σ2 yields ! 
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 − − − 

as the corresponding 100% dence interval. 

Maple can supply the critical values: 

> statevalf[icdf,chisquare[12]](.975); 

Expected-value estimator 

Sometimes we want to estimate the expected value of y obtained with a new choice of x 

(let us call it x0) which should not be outside the original range of x values (no 

extrapolation)! This effectively means that we want a good estimator for E(y0) ≡ β0 + 

β1x0. Not surprisingly, we use which is clearly unbiased, normally distributed, with the 

variance of  

since y and βb1 are uncorrelated. This implies that 

 

must also have the tn−2 distribution.. It should now be quite obvious as to how to 

construct a confidence interval for E(y0). 

New y value 

We should also realize that predicting an actual new value of y taken at x0 (let us call it 

y0) is a different issue, since now an (independent) error ε0 is added to best prediction of 

ε0 is its expected value 0), but the variance of y0bis the varianceb β0 + β1x0. For the 

prediction itself we still have to use the same β0 + β1x0 (our of yb0 plus σ2 (the variance 

of ε0), i.e. 

 

It thus follows that 

 

100also has the% predictiontn−2 distribution.. We can then construct the 

correspondinginterval for y0. The reason why we use another name again(1 − α) · is that 

now we are combining the a priori error of a confidence interval with the usual, yet-to-

happen error of taking the y0 observation. 
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Hypotheses Testing 
Rather than constructing a confidence interval for an unknown parameter, we may like 

to test a specific hypothesis concerning the parameter (such as, for example, that the 

exact slope is zero). The two procedures (hypotheses testing and confidence-interval 

construction) are computationally quite similar (even if the logic is different). 

First we have to state the so called null hypothesis H0, such as, for example, that β1 

= 0 (meaning that x does not effect y, one way or the other). This is to be tested against 

the alternate hypothesis HA (β1 = 06 in our case). 

To perform the test, we have compute the value of a so called test statistic T. This 

is usually the corresponding estimator, ’normalized’ to have a simple distribution, free 

from unknown parameters, when H0 is true - in our case, we would use (3.3) with β1 = 

0, i.e. 

 

Under H0, its distribution is tn−2, otherwise (under HA) it has a more complicated non-

central distribution (the non-centricity parameter equal to the actual value of β1). 

Now, based on the value of T, we have to make a decision as to whether to go with 

H0 or HA. Sure enough, if H0 is true, the value of T must be relatively small, but how 

small is small? To settle that, we allow ourselves the probability of α (usually 5%) to 

make a so called Type I error (rejecting H0 when true). Out critical values will then be 

the same as those of the corresponding confidence interval (±tα
2 ,n−2). We reject H0 

whenever the value of T enters the critical region (outside the interval), and don’t reject 

(accept) H0 otherwise. Note that the latter is a weaker statement - it is not a proof of H0, 

it is more of an inability to disprove it! When accepting H0, we can of course be making 

a Type II error (accepting H0 when wrong), the probability of which now depends on the 

actual (non-zero) value of β1 (being, effectively, a function of these). To compute these 

errors, one would have to work with the non-central tn−2 distributions (we will not go 

into that). 

Model Adequacy (Lack-of-Fit Test) 
Let us summarize the assumptions on which the formulas of the previous sections are 

based. 

The first of them (called model adequacy) stipulates that the relationship between x 

and y is linear. There are two ways of checking it out. One (rather superficial, but 

reasonably accurate) is to plot the resulting residuals against the xi values, and see 

whether there is any systematic oscillation. The other one (more ’scientific’ and 

quantitative) is available only when several independent y observations are taken at each 

xi value. This yields and ’independent’ estimate of our σ, which should be consistent 

with the size of the computed residuals (a precise test for doing this is the topic of this 

section, and will be described shortly). The other three assumptions all relate to the εi’s 

1. being normally distributed, 

2. having the same (constant) standard deviation σ, 

3. being independent, i.e. uncorrelated. We would usually be able to 

(superficially) establish their validity by scrutinizing the same ei-xi graph. In 

subsequent sections and chapters, we will also deal with the corresponding remedies, 

should we find any of them violated. 
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For the time being, we will assume that the last three assumptions hold, but we are 

not so sure about the straight-line relationship between x and y. We have also collected, 

at each xi, several independent values of y (these will be denoted yij, where j = 1, 2,...ni). 

In this case, our old residual (error) sum of squares can be partitioned into two 

components, thus: 
m 

≡ 

SSPE + SSLOF 

due to pure erroris the number of distinct xi values, and 

 
is the ’group’ mean of the y observations taken with xi. Note that the overall mean (we 

used to call it y, but now we switch - just for emphasis - to y, and call it the grand mean) 

can be computed by 

 

The old formulas for computing β0 and β1 (and their 

standard errors) remain correct, but one has to rede 

But the primary issue now 

is to verify that the model 

is adequate. 

To construct the appropriate test, we first 

have to prove that, under the null hypothesis 

(linear model correct),  and  are 

independent, and have the χ2
n−m and χ2

m−2 

distribution, respectively (where

, the total number of y observations). 

Proof: The statements about  is a MATH 2F96 result. Proving that has the χ2
m 

2 distribution is the result of the next section. Finally, since is 

independent of  (another MATH 2F96 result), and SSPE 

is a sum of the former, and SSLOF is computed based on the latter (since 

, and both βb0 and βb1 are computed using the ’group’ means  

To test the null hypothesis that the x-y relationship is linear (against all possible 

alternatives), we can then use the following test statistic: 

 
which (under H0) has the Fm−2,n−m distribution. When H0 is false, SSLOF (but not SSPE) 

will tend to be ’noticeably’ larger than what could be ascribed to a purely random 

variation. We will then reject H0 in favor of HA as soon as the value of the test statistics 

enters the critical (right-hand tail) region of the corresponding F distribution. 

> x := [1,3,6,8.]: 

> y := [[2.4,3.2,2.9,3.1], [3.9,4], [4.2], [4.1,4.7,5.6,5.1,4.9]]: 
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> ng := [seq(nops(y[i]), i = 1..4)]: 

> n :=sum(ng[i], i = 1..4): 

> ybar := [seq(sum(y[i][j], j = 1..ng[i])/ng[i], i = 1..4)]: 

>> xmeanSSpe :=:=sumsum(sum(ng[((i]y∗[iybarx][[ji]], i−[i], i= 1ybar= 1..[4)i])../nˆ4)2:, j/n:= 

1..ng[i]), i = 1..4): 

>>> ymeanSxxSxy :=:=:=sumsumsum((ngng([[ngii]]∗∗[i]((xx∗[[ii]]−−xmeanxmean))ˆ∗2ybar, i = 

1[i], i..4)= 1: ..4): 

> beta1 := Sxy/Sxx: 

> beta0 := ymean − xmean ∗ beta1: 

> SSlof :=sum(ng[i] ∗ (ybar[i] − beta0 − beta1 ∗ x[i])ˆ2, i = 1..4): 

> (SSlof/2)/(SSpe/8); 

0.9907272888 

> with(stats): 

> statevalf[icdf,fratio[2,8]](0.95); 

4.458970108 

> with(plots): 

> pl1 :=pointplot([seq(seq([x[i],y[i][j]], j = 1..ng[i]), i = 1..4)]): 

> pl2 :=plot(beta0 + beta1 ∗ z, z = 0.5..8.5): 

> display(pl1,pl2); 

Weighted Regression 
In this section, we modify the procedure to accommodate the possibility that the 

variance of the error terms is not constant, but it is proportional to a given function of x, 

i.e. The same modification of the variance is also 

encountered in a different context: When, at xi, ni 

observations are taken (instead of the usual one) and the resulting mean of the y 

observations is recorded (we will still call it yi), then (even with the constant-σ 

assumption for the individual observations), we have the previous situation with wi = ni. 

The wi values are called weights (observations with higher weights are to be taken that 

much more seriously). 

It is quite obvious that maximizing the likelihood function will now require to 

minimize the weighted sum of squares of the residuals, namely 

 

The resulting estimators of the regression coefficients are the old 
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and where 

One can easily show that all related formulas 

remain the same, except for: 

Corr

 

which require replacing n by the total weight. 

Similarly, for the maximum-likelihood estimator of σ2 we get 

Since  

 
remains unchanged (note that his time we did not replace n by the total weight) this can 

be seen from 

 

and so does we still get the same

 

This implies that 
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= Syy 
− 

b 2. Late on, we will prove σb2 

that it is still independentn − is an unbiased estimator of σ 

of , and has the χ2
n−2 distribution. 

Suppose now that both x and y are random, normally distributed with (bivariate) 

parameters µx, µy, σx, σy and ρ. We know that the conditional distribution of y given x is 

also (univariate) normal, with the following conditional mean and variance: 

  (3.4) 

and β1. They are still the ’best’ (maximum-likelihood) estimators (as we will seeb Our 

regular regression would estimates the regression coefficients by the usual β0 shortly), 

but their statistical properties are now substantially more complicated.b 

Historical comment: Note that by reversing the rôle of x and y (which is now quite 

legitimate - the two variables are treated as ’equals’ by this model), we get the 

following regression line: 

 

One can easily see that this line is inconsistent with (3.4) - it is a lot steeper when 

plotted on the same graph. Ordinary regression thus tends, in this case, to distort 

the true relationship between x and y, making it either more flat or more steep, 

depending on which variable is taken to be the ’independent’ one. 

Thus, for example, if x is the height of fathers and y that of sons, the regression 

line will have a slope less than 45 degrees, implying a false averaging trend 

(regression towards the mean, as it was originally called - and the name, even 

though ultimately incorrect, stuck). The fallacy of this argument was discovered 

as soon as someone got the bright idea to fit y against x, which would then, still 

falsely, imply a tendency towards increasing diversity. 

One can show that the ML technique would use the usual x and y to estimate µx and

 to estimate σx and σy, and 

  (3.5) 

as an estimator of ρ (for some strange reason, they like calling the estimator r rather than 

the usual bρ). This relates to the fact that 
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is an unbiased estimator of Cov Proof: 

 

sections. Investigating their statistical properties now becomes a lot more dib b fficult 

One can easily verify that these estimators agree with β0 and β1 of the previous 

(mainly because of dividing by , which is random). We have to use largesample 

approach to derive asymptotic formulas only (i.e. expanded in powers of , something 

we will take up shortly. 

The only exact result we can derive is that 

 

which we know has the tn−2 distribution, assuming that β1 = 0. We can thus use it for 

testing the corresponding hypothesis (the test will be effectively identical to testing H0: 

β1 = 0 against an alternate, using the simple model). 

Squaring the r estimator yields the so called coefficient of determination 

 

which tells us how much of the original y variance has been removed by fitting the best 

straight line. 

Large -Sample Theory 
Large sample theory tells us that practically all estimators are approximately normal. 

Some of them of course approach normality a lot faster than others, and we will discuss 

a way of helping to ’speed up’ this process below. 

To be more precise, we assume that an estimator has the form of f(X, Y ,...) 

where X, Y , ... are themselves functions of individual observations, and f is another 

function of their sample means (most estimators are like this), say 

 

To a good approximation we can (Taylor) expand f( X,Y ,...) around the 

corresponding expected values, as follows 

 
The corresponding expected value is 
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and the variance (based on the linear terms only): 

 

For example, one can show that 

is approximately normal, with the mean of  

 

(to derive this result, we borrowed some formulas of the next section). Similarly, one 

can compute that the corresponding variance equals 

 

divided by n. we concentrate on the issue which is usually consider primary for this kind 

of model,b b We will not investigate the statistical behavior of β1 and β0 any further, 

instead, namely constructing a 

Confidence interval for the correlation coefficient 

To apply (3.6) and (3.7) to r, we first realize that the three means are 

 

The corresponding variances (where, to our level of accuracy, we can already replace x 

by µx and y by µy) are easy to get from the following bivariate moment generating 

function  

They are, respectively 

 

= 

= 

= 

σ2xσ2y + 

σ2xσ2yρ2 

2σ4x 

2σ4y 

We will also need the three covariances, which are 
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3σ3xσyρ − σ3xσyρ 

3σxσ3yρ − σxσ3yρ 

σ2xσ2y + 2σ2xσ2yρ2 − σ2xσ2y 

= 

= 

= 

2σ3xσyρ 

2σxσ3yρ 

2σ2xσ2yρ2 

This means that the expected value of r equals, to a good approximation, to 

 

Similarly, the variance of r is 

 

divided by n. 

Similarly, one could compute the third central moment of r and the 

corresponding skewness (which would turn out to be, i.e. fairly substantial 

even for relatively large samples). 

One can show that integrating(in terms of ρ) results in a new quantity 

whose variance (to this approximation) is constant (to 

understand the logic, we realize that F(r) has a variance given by F0(ρ)2·Var(r); now try 

to make this a constant). The integration yields 

 
and, sure enough, similar analysis shows that the variance of the corresponding 

estimator, namely 

 

is simply  (carrying the computation to  terms shows that  is a better 

approximation). Its expected value is similarly 

  (3.8) 

and the skewness is, to this approximation equal to 0. The estimator z is therefore 

becoming normal a lot faster (with increasing n) than r itself, and can be thus used for 

constructing approximate confidence intervals for ρ. This is done by adding the critical 

values ofmaking the two resulting limits equal to (3.8), and 

(using a calculator, we usually neglect the  term solving for ρ 

and use tanh(...); when Maple is available, we get the more accurate solutions).  
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 Chapter 4 MULTIVARIATE (LINEAR) 

REGRESSION 
First a little insert on 

Multivariate Normal Distribution 
Consider n independent, standardized, Normally distributed random variables. Their 

joint probability density function is clearly 

 

(a product of the individual pdf’s). Similarly, the corresponding moment generating 

function is 

 
The following linear transformation of these n random variables, namely 

X = AZ + µ 

where A is an arbitrary (regular) n by n matrix, defines a new set of n random variables 

having a general Normal distribution. The corresponding PDF is clearly 

 

and the MGF 

 

where V 
≡ 

AAT is the corresponding variance-covariance matrix (this can be verified 

directly). Note that there are many different A’s resulting in the same V. Also note that 

Z = A−
1(X−µ), which further implies that 

(
X

−µ)T (A−
1)TA−

1(
X

−µ) = (
X

−µ)T(AAT)−
1(

X
−µ) = (

X
−µ)TV−

1(
X

−µ) 

has the χ2
n distribution. 

The previous formulas hold even when A is a matrix with fewer rows than columns. 

To generate a set of normally distributed random variables having a given variance-

covariance matrix V requires us to solve for the corresponding A (Maple provides us 
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with Z only, when typing: stats[random,normald](20) ). There is infinitely many such 

A matrices, one of them (easy to construct) is lower triangular. 

Partial correlation coefficient 

The variance-covariance matrix can be converted into the correlation matrix, whose 

elements are defined by: 

· 

Clearly, the main diagonal elements of C are all equal to 1 (the correlation of Xi with 

itself). 

Suppose we have three normally distributed random variables with a given 

variance-covariance matrix. The conditional distribution of X2 and X3 given that  

has a correlation coefficient independent of the value of . It is called the partial 

correlation coefficient, and denoted ρ23|1. Let us find its value in terms of the ordinary 

correlation coefficients.. 

Any correlation coefficient is independent of scaling. We can thus choose the three 

X’s to be standardized (but not independent), having the following treedimensional PDF: 

where  

Since the marginal PDF of X1 is 

 

the conditional PDF we need is 

 

The information about the five parameters of the corresponding bi-variate distribution 

is in 

 
which, in terms of the two conditional means and standard deviations agrees with what 

we know from MATH 2F96. The extra parameter is our partial correlation 

coefficient 

 

Multiple Regression - Main Results 
This time, we have k independent (regressor) variables x1, x2,...,xk; still only one 

dependent (response) variable y. The model is 
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yi = β0 + β1x1,i + β2x2,i + ... + βkxk,i + εi 

with i = 1, 2,...,n, where the first index labels the variable, and the second the 

observation. It is more convenient now to switch to using the following matrix notation 

y = Xβ + ε 

where y and ε are (column) vectors of length n, β is a (column) vector of length k+1, 

and X is a n by k+1 matrix of observations (with its first column having all elements 

equal to 1, the second column being filled by the observed values of x1, etc.). Note that 

the exact values of β and ε are, and will always remain, unknown to us (thus, they must 

not appear in any of our computational formulas). 

Also note that your textbook calls these β’s partial correlation coefficients, as 

opposed to a total correlation coefficient of a simple regression (ignoring all but one of 

the independent variables). 

To minimize the sum of squares of the residuals (a scalar quantity), namely 

 (
y

T −XβT)T(
y

−
X

Tβ
) =

T T T 

y y−y Xβ−β X y + β X Xβ 

(note that the second and third terms are identical - why?), we differentiate it with 

respect to each element of β. This yields the following vector: 

−2XT y + 2XTXβ 

Making these equal to zero provides the following maximum likelihood (least square) 

estimators of the regression parameters: 

 β  Ty≡β + (XTX)−
1XTε 

tributed with the variance-covariance matrix of
b 

T T The last form makes it clear that are 

unbiased estimators of β, normally dis- 

σ2(XTX)−1XTX(X X)−1 = σ2(X X)−1 

The ’fitted’ values of are 

computed by yb = Xb H ε 

where H is clearly symmetric and idempotent (i.e. H2 = H). Note that HX = X. 

This means that the residuals ei are computed by 

e = y−yb = (I−H)ε 
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(I − H is also idempotent). Furthermore, the covariance (matrix) between the elements 

of βb −β and those of e is: 

 

which means that the variables are uncorrelated and therefore independent (i.e. each of 

the regression-coefficient estimators is independent of each of the residuals — slightly 

counter-intuitive but correct nevertheless). 

The sum of squares of the residuals, namely eTe, is equal to 

εT (I−H)T (I−H)ε = εT(I−H)ε 

Divided by σ2: 

Z 

where Z are standardized, independent and normal. 

can be written asWe know (from matrix theory) that any symmetric matrix (including 

ourRT DR, where D is diagonal and R is orthogonal (implyingI−H) 

RT ≡R−
1). We can then rewrite the previous expression as 

ZTRTDRZ = ZeTDZe 

(since its variance-covariance matrix equalse I). Its distribution is thus χ2 if and where 

Z
≡

RZ is still a set of standardized, independent Normal random variables 

only if the diagonal elements of D are all equal either to 0 or 1 (the number of degrees 

being equal to the trace of D). 

theprocess). Well, such a test is not diHow can we tell whether this is true for ourRT
DR 

form) 

without actually performing the diagonalization (a fairly trickyfficult to design, once we notice 

thatI−H matrix (when expressed in( )2 = 

diagonal) if and only ifRTDRRTDR = RTD2 RD.2Clearly,= D, which is the same as saying 

thatD has the proper form (only 0 or(I−1 Hon the main)I2−=HI−H 

(which we already know is true). This then implies that the sum of squares of the 

residuals has χ2 distribution. Now, how about its degrees of freedom? Well, since the 

trace of D is the same as the trace of RTDR (a well known property of trace), we just 

have to find the trace of I−H, by 

Tr 
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b 
  σ 

2 (  T  ) − 1 

 ) 
T  T  (  −  ) 

 
n 

− ¢ −

 ¢ − 

i.e. the number of observations minus the number of regression coefficients. 

The sum of squares of the residuals is usually denoted SSE (for ’error’ sum of squares, 

even though it is usually called residual sum of squares) and computed by 

 ( β = 

= y 

We have just proved that it has the χ2 distribution with n − (k + 

1) degrees of freedom, and is independent of β. A related 

definition is that of a residual (error) mean square MS n − (k 

+ 1) 

This would clearly be our unbiased estimator of σ2. > 

with(linalg): with(stats): with(plots): 

> x1 := [2,1,8,4,7,9,6,9,2,10,6,4,8,1,5,6,7]: 

> x2 := [62,8,50,87,99,67,10,74,82,75,67,74,43,92,94,1,12]: 

> x3 := [539,914,221,845,566,392,796,475,310,361,383,593,614,278,750,336,262]: 

> y := [334,64,502,385,537,542,222,532,450,594,484,392,392,455,473,283,344]: 

> X := matrix(17,1,1.): 

> X := augment(X,x1,x2,x3): 

> C := evalm(inverse(transpose(X)&*X)): 

> beta := evalm(C&* transpose(X)&*y); β := [215.2355338, 

22.41975192, 3.030186331, —0.2113464404] 

; 

MSe := 101.9978001 

> for i to 4 do sqrt(C[i,i] ∗ MSe) od; 

10.83823625 

0.9193559350 

0.07784126745 

0.01214698750 

Various standard errors 

We would thus construct a confidence interval for any one of the β coefficients, say βj, 

by where 

Similarly, to test a hypothesis concerning a single βj, we would use 

 
as the test statistic. 

 Since the variance-covariance matrix of , we know that 
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b T x 0 ±  α 
2 ,n − k − 1 · 

q 
(1+ x T 0  x 0 ) · MS E 

 

ε i equals σ 2 
i 

 (βb − 2 b 

σ 

has the χ2
k+1 distribution. Furthermore, since the β’s are 

independent of the residuals, 

must have the Fk+1,n−k−1 distribution. This enables us to construct confidence ellipses 

(ellipsoids) simultaneously for all parameters or, correspondingly, perform To estimate 

E(y0b), where y0 is the value of the response variable when we choose 

a single test of H0: β = β0. a brand new set of x values (let us call them x0), 

we will of course use 

βbTx0 

which yields an unbiased estimator, with the variance of 

σ2 x0T (XT X)−1x0 

(recall the general formula for a variance a linear combination of random variables). 

To construct a corresponding confidence interval, we need to replace σ2 by MSE: 

 β  

Predicting the actual value of , one has to include the ε 

variance (as in the univariate case).: 

β 

Weighted-case modifi 

When the variance of w or, equivalently, when the variance-covariance matrix of ε is 

given by σ2W−1 

where W is a matrix with the wi’s on the main diagonal and 0 everywhere else, since the 

εi’s remain independent (we could actually have them correlated, if that was the case). 

The maximum likelihood technique now leads to minimizing the weighted sum of 

squares of the residuals, namely 

SSE ≡ (y−Xβ)T W(y−Xβ) 

yielding 

βb = (XT WX)−
1XT Wy≡β + (XT WX)−

1XT Wε 
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This implies that the corresponding variance-covariance matrix is now equal to 

(XT WX)−1XT W(σ2W−
1)WX(XT WX)−1 = σ2(XT WX)−1 

The H matrix is defined by 

H≡X(XT WX)−
1XT W 

(idempotent but no longer symmetric). One can then show that β and e remain 

uncorrelated (thus independent) since 

(XT WX)−
1XT WE£εεT¤(I−H T) = O 

Furthermore, SSE can be now reduced to 

Z 

Since 

W−1/2(I−H)T W(I−H)W−1/2 = I−W1/2 X(XT WX)−1XT W1/2 is symmetric, 

idempotent, and has the trace equal to  still has 

the χ2
n−(k+1) distribution (and is independent of β). 

Redundancy Test 
Having more than one independent variable, we may start wondering whether some of 

them (especially in combination with the rest) are redundant and can be eliminated 

without a loss of the model’s predictive powers. In this section, we design a way of 

testing this. We will start with the full (unrestricted) model, then select one or more 

independent variables which we believe can be eliminated (by setting the corresponding 

β equal to 0). The latter (the so called restricted or reduced model) constitutes our null 

hypothesis. The corresponding alternate hypothesis is the usual ”not so” set of 

alternatives, meaning that at least one of the β (i.e. not necessarily all) of the null 

hypothesis is nonzero. 

The way to carry out the test is to first compute SSE for both the full and restricted 

model. (let us call the answers  and  respectively). Clearly,  must be 

smaller that  (with more independent 

variables, the fit can 

only improve). Furthermore, one can show that 

are, under the assumptions of the null hypothesis, independent, χ2 distributed, with 
n−

(
k 

+1) and 
k − 

degrees of freedom respectively (where 
k 

is the number of independent 

variables in the full model, and tell us how many of them are left in the restricted model). 
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Proof: Let us recall the definition of H ≡ X(XTX)−1XT (symmetric and idempotent). We 

can now compute two of these (for the full and restricted 

model), say Hfull and Hrest. Clearly, y and yT 

(I−Hrest)y. Also, Xrest = Xfull↓ where ↓ implies dropping the last k − columns. Now 

 

since AB↓ = (AB)↓. We thus have 

 
or 

Hfull Hrest = Hrest 

Taking the transpose immediately shows that, also 

Hrest = Hfull Hrest 

We already know whyis idempotent, with trace ofwill now show that 

(SSSSErestEfull−/σnSS−2 has theEfullk − andχn2−k(−I1−distribution: 

becauseH2kfull)distribution:y = (I−HfullI)−εH. Wefull 

1, 

)/σ2 has the χ − 

The null hypothesis 

y = Xrest βrest + ε 

implies that 

 

Hfull −Hrest is idempotent, as 

(Hfull −Hrest)(Hfull −Hrest) = Hfull −Hrest −Hrest + Hrest = Hfull −Hrest and 

Trace(Hfull −Hrest) = Trace(Hfull) − Trace(Hrest) = 

Trace(Ifull) − Trace(Irest) = (k + 1) − ( + 1) = k − 

Finally, we need to show that εT(I − Hfull)ε and εT(Hfull − Hrest)ε are independent. 

Since the two matrices are symmetric and commute, i.e. 

(I−Hfull)(Hfull −Hrest) = (Hfull −Hrest)(I−Hfull) = O they can be diagonalized 

by the same orthogonal transformation. This implies that  and 

 can be expressed as  
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remain idempotent, the issue of independence of the two quadratic forms (ase and

 respectively (using the same Z). Furthermore, since D1 and D2 

they are called) is reduced to asking whether  are independent or 

not. Since their covariance matrix is D1D2, independence is guaranteed by D1D2 = 

O. This is equivalent to (I−Hfull)(Hfull −Hrest) = O, which we already know to by 

true. ¤ 

Knowing all this enables us to test the null hypothesis, based on the following test 

statistic: 

− (k + 1) 

whose distribution (under the null hypothesis) is Fk−,n−k−1. When the null hypothesis is 

wrong (i.e. at least one of the independent variables we are trying to delete is effecting 

the outcome of y), the numerator of the test statistic becomes unusually ’large’. The 

corresponding test will thus always have only one (right-hand) ’tail’ (rejection region). 

The actual critical value (deciding how large is ’large’) can be looked up in tables of the 

F distribution (or we can ask Maple). 

At one extreme. we can try deleting all independent variables, to see whether any of 

them are relevant, at the other extreme we can test whether a specific single xj can be 

removed from the model without effecting its predictive powers. In the latter case, our 

last test is equivalent to the usual (two-tail) t-test of βj = 0. 

Later on, we will tackle the issue of removing, one by one, all irrelevant independent 

variables from the model. 

Searching for Optimal Model 
Realizing that some of the independent variables may be irrelevant for y (by either being 

totally unrelated to y, or duplicating the information contained in the remaining x’s), we 

would normally (especially when the original number of x’s is large) like to eliminate 

them from our model. But that is a very tricky issue, even when we want to properly 

define what the ’best’ simplest model should look like. 

Deciding to make SSE as small as possible will not do any good - we know that 

including a new x (however phoney) will always achieve some small reduction in SSE. 

Trying to keep only the statistically significant x’s is also quite difficult, as the 

significance of a specific independent variable depends (often quite strongly) on what 

other x’s included or excluded (e.g. if we include two nearly identical x’s, individually, 

they will appear totally insignificant, but as soon as we remove one of them, the other 

may be highly significant and must stay as part of the model). 

We will thus take a practical approach, and learn several procedures which should 

get us reasonably close to selecting the ’best’ subset of the independent variables to be 

kept in the model (the others will be simply discarded as irrelevant), even without 

properly defining what ’best’ means. The basic two are 

1. Backward elimination: Starting with the full model, we eliminate the x with the 

smallest t  value, assuming this t is non-significant (using a specific 
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α). This is repeated until all t values are significant, at which point we stop and 

keep all the remaining x’s. 

2. Forward selection: Using k models, each with a single x, we select the one of the 

remaining ones (again, including the most signione with the highest t. Then we 

try all k − 1 models having thisficant of these).x, and 

In this manner we keep on extending the model by one x at a time, until all 

remaining x’s prove non-significant (at some fixed level of significance usually 

5%). 

Each of these two procedures can be made a bit more sophisticated by checking, 

after each elimination (selection), whether any of the previously eliminated (selected) 

independent variables have become significant (non-significant), in which case they 

would be included (removed) in (from) the model. The trouble is that some x may then 

develop a nasty habit of not being able to make up their mind, and we start running in 

circles by repeatedly including and excluding them. One can take some preventive 

measures against that possibility (by requiring higher significance for inclusion than for 

kicking a variable out), but we will not go into these details. We will just mention that 

this modification is called stepwise (stagewise) elimination (selection). In this course, 

the procedure of choice will be backward elimination. 

We will use data of our previous example, with the exception of the values of y: 

> y := [145,42,355,123,261,332,193,316,184,371,283,171,270,180,188,276,319]: 

> X := matrix(17,1,1.): 

> X := augment(X,x1,x2,x3): 

> C := evalm(inverse(transpose(X)&*X)): 

> beta := evalm(C&* transpose(X)&*y); β := [204.8944465, 23.65441498, 

0.0250321373, —0.2022388198] 

>> eMSe:=evalm:=sum(X(e&[’*ibeta’]ˆ2,’−i’= 1y):..17)/13; 

MSe := 62.41228512 

> for i to24.167511534 do beta[i]/sqrt(C[i,i] ∗ MSe) od; 

32.89189446 

0.4111008683 

—21.28414937 

> statevalf[icdf,studentst[13]](0.975); 

2.160368656 

> X := submatrix(X,1..17,[1,2,4]): 

In the last command, we deleted the variable with the smallest (absolute) value of t, 

since it is clearly nonsignificant (compared to the corresponding critical value). 

We then have to go back to recomputing C etc., until all remaining t values are 

significant. 
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Coefficient of Correlation (Determination) 
The multiple correlation coefficient (usually called R) is computed in the manner 

variable. b 

of (3.5) between the observed (y) and ’predicted’ (y = Hy) values of the response 

First we show that y has the same mean (or, equivalently, total) as y. This can 

be seen fromT T T b T T T T T T T T 

1 X(X X)−
1X y = y X(X X)−

1X 1 = y X(X X)−
1X X↓ = y X↓ = y 1 

where 1 is a column vector of length n with each component equal to 1, and X↓ means 

deleting all columns of X but the first one (equal to 1). between the two is computed by 

b 

If we call the 

corresponding mean (of y and y) ¯y, the 

correlation coefficient 

Since H is idempotent, this equals 

 yTyy−y¯2 

R2 defines the coefficient of determination, which is thus equal to y 

y 

where SSR is 

the (due 

to) regression sum of squares (a bit confusing, since SSE is called residual sum of 

squares). It is thus best to remember the formula in the following form: 

 

It represents the proportion of the original Syy removed by regression. 

Polynomial Regression 
This is a special case of multivariate regression, with only one independent variable x, 

but an x-y relationship which is clearly nonlinear (at the same time, there is no ’physical’ 

model to rely on). All we can do in this case is to try fitting a polynomial of a sufficiently 

high degree (which is ultimately capable of mimicking any curve), i.e. 

 

t 

T  y − 
¯ y 2 
n 

T y − 
¯ y 2 
n 

= 
y T y − 

¯ y 2 
n − 

¡ 
y T y − y T  y 

¢ 

y T y − 
¯ y 2 
n 

= S yy − SS E 

S yy 
≡ 
SS R 

S yy 
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xE3ff≡ectively, this is the same as having a multivariate model withx3, etc., or, equivalently x1 

≡ x, x2 ≡ x2, 

 
All formulas of the previous section apply unchanged. The only thing we may like to do 

slightly differently is our backward elimination: In each step, we will always compute 

the t value corresponding to the currently highest degree of x only, and reduce the 

polynomial correspondingly when this t turns out to be non-significant. We continue 

until we encounter a significant power of x, stopping at that point. This clearly simplifies 

the procedure, and appears quite reasonable in this context. 

: 

:= 5: 

> X := matrix(13,k): 

> for1.) od od: 

> C := 

> beta := evalm(C&* transpose(X)&*y): 

: 

—4.268191026 

> statevalf2.228138852[icdf,studentst[13 − k]](.975); 

>> kpl1 :=:= k −pointplot1:: 

 > pl2 := plot(beta[1] + beta[2] + beta[3] ˆ2,z = 0..90): 

> display(pl1,pl2); 

We have to execute the X := matrix(13,k) to k := k−1 loop until the resulting t value 

becomes significant (which, in our program, happened when we reached the 

quadratic coefficient). 

Similarly to the simple-regression case, we should never use the resulting equation 

with an x outside the original (fitted) data (the so called extrapolation). This maxim 

becomes increasingly more imperative with higher-degree polynomials - extrapolation 

yields totally nonsensical answers even for relatively ’nearby’ values of x. 

Dummy (Indicator) Variables 
Some of our independent variables may be of the ’binary’ (yes or no) type. This again 

poses no particular problem: the yes-no (true-false, male-female, etc.) values must be 

translated into a numerical code (usually 0 and 1), and can be then treated as any other 

independent variable of the multivariate regression (and again: non of the basic formulas 

change). In this context, any such x is usually called an indicator variable (indicating 

whether the subject is a male or a female). 
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There are other instances when we may introduce a dummy variable (or two) of this 

type on our own. For instance, we may have two sets of data (say, between the age and 

salary), one for the male, the other for female employees of a company. We know how 

to fit a straight line for each set of data, but how do we test whether the two slopes and 

intercepts are identical? 

Assuming that the errors (εi) of both models have the same σ, we can pool them 

together, if in addition to salary (y) and age (x), we also include a 0-1 type variable (say 

s) which keeps track of the employee’s sex. Our new (multivariate) model then reads: 

y = β0 + β1x + β2s + β3xs + ε 

which means that, eand s). Using the usual multivariate regression, we can 

nowffectively, x1 ≡ x, x2 ≡ s and x3 ≡ xsfind the best (least-(the product of x square) 

estimates of the four regression coefficients. The results must be the same as performing, 

separately, two simple regressions, in the following sense: 

y = β0 + β1x 

(using our multivariate-fit β’s) will agree with the male simple regression (assuming 

males were coded as 0), andb b b 

 b b b b 

y = (β0 + β2) + (β1 + β3)x 

will agree with the female simple regression. So that by itself is no big deal. But now 

we can easily test for identical slopes (β3 = 0) or intercepts (β2 = 0), by carrying out the 

usual multivariate procedure. Furthermore, we have a choice of performing these two 

tests individually or, if we like. ’collectively’ (i.e. testing whether the two straight lines 

are in any way different) - this of course would have to be done by computing the full 

and reduced SSE, etc. One further advantage of this approach is that we would be pooling 

the data and thus combining (adding) the degrees of freedom of the residual sum of 

squares (this always makes the corresponding test more sensitive and reliable). 

Example: We will test whether two sets of x-y data can be fitted by the same straight 

line or not. 

: 

2 := [16 28 33 26 40 39 43 41 52 46]: 

> pl1 := pointplot([seq([x1[i],y1[i]],i = 1..10)]): 

> pl2 := pointplot([seq([x2[i],y2[i]],i = 1..10)],color = red): 

> display(pl1,pl2); 
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 := [ ( 1) ( 2)]: 

: 

 := [seq( [ ] [ ] = 1 20)]: 

> X := matrix(20,1,1.): 

> X := augment(X,x,s,xs): 

> beta := evalm(inverse(transpose(X)&*X)&*transpose(X)&*y): 

> e := evalm(X&*beta − y): 

> SSeFull := sum(e[i]ˆ2,i = 1..20); SSeFull := 

316.4550264 

> X := matrix(20,1,1.): 

> X := augment(X,x): 

> beta := evalm(inverse(transpose(X)&*X)&* transpose(X)&*y): 

> e :=evalm(X&*beta − y): 

> SSeRest := sum(e[i]ˆ2,i = 1..20); SSeRest := 

402.0404903 

> ((SSeRest − SSeFull)/2)/(SSeFull/(20 − 4)); 

2.163605107 

> statevalf[icdf,fratio[2,6]](0.95); 

3.633723468 

Since the resulting F2,16 value is nonsignificant, the two sets of data can be fitted by a 

single straight line. 

Linear Versus Nonlinear Models 
One should also realize that the basic (multi)-linear model 

y = β0 + β1x1 + β2x2 + ... + βkxk + ε 

covers many situations which at first may appear non-linear, such as, for example 

y = β0 + β1e−t + β2 lnt + ε y

 = β0 + β1e−t + β2 lnp + ε 

where t (in the first model), and t and p (in the second one) are the independent variables 

(all we would have to do is to taket x1 ≡ e−t and x2 ≡ lnt in the first case, and 
x1 ≡ e− and 

x2 ≡ 
ln

p 
in the second case, and we are back in business. The important thing to realize 

is that ’linear’ means linear in each of the β’s, not necessarily linear in x. 

A slightly more difficult situation is 

v = a · bx 

where v is the dependent and x the independent variable. We can transform this to a 

linear model by taking the logarithm of the equation 
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lnv = lna + x · lnb 

which represents a simple linear model if we take y ≡ lnv, β0 ≡ lna and β1 ≡ lnb. The only 

trouble is that we have to assume the errors to be normally distributed (with the same σ) 

after the transformation (making the assumptions about errors rather complicated in the 

original model). 

Of course, there are models which will remain essentially non-linear no matter how 

we transform either the independent or the dependent variable (or both), e.g. 

 

We will now learn how to deal with these. 

Chapter 5 NONLINEAR REGRESSION 
We will assume the following model with one independent variable (the results can be 

easily extended to several) and k unknown parameters, which we will call b1, b2
, 
... bk: 

y = f(x,b) + ε 

where f(x,b) is a specific (given) function of the independent variable and the k 

parameters. 

Similarly to linear models, we find the ’best’ estimators of the parameters by 

minimizing 

 (5.1) The trouble is that the normal equations 

 

(j = 1, 2,...k) are now non-linear in the unknowns, and thus fairly difficult to solve. The first two 

terms of the Taylor expansion (in terms of b) of the left hand side, at some arbitrary point b0 (close 

to the exact solution), are 

¯ (5.2) 

term; furthermore, it would destabilize the iterative solution below. It is thus to our 

advantage to drop it (this also saves us computing the second derivatives). Making the 

previous expansion (without the offensive term) equal to zero, and solving for b, yields 

 b  (5.3) 

where 
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b=b0 

is the matrix of all k partial derivatives, evaluated at each value of x, and 

e  

is the vector of residuals. 

The standard (numerical) technique for solving them iteratively is called Levenberg-

Marquardt, and it works as follows: 

1. We start with some arbitrary (but reasonably sensible) initial values of the 

unknown parameters, say b0. We also choose (quite arbitrarily) the first value of 

an iteration parameter to be λ = 1 . 

2. Slightly modifying (5.3), we compute a better approximation to the solutionby 

 b  (5.4) 

where ’diag’ keeps the main-diagonal elements of its argument, making the rest 

equal to 0 (effectively, this says: multiply the diagonal elements of X0
TX0 by 1+λ). 

If the sum of squares (5.1) increases, multiply λ by 10 and backtrack to b0, if it 

decreases, reduce λ by a factor of 10 and accept b1 as you new solution. 

3. Recompute (5.4) with the new λ and, possibly, new b, i.e. b

 

where X and e are now to be evaluated using b1 (assuming it was accepted in the 

previous step). Again, check whether this improved the value of (5.1), and 

accordingly accept (reject) the new b and adjust the value of λ. 

4. Repeat these steps (iterations) until the value of (5.1) no longer decreases(within 

say 5 significant digits). At that point, compute (XTX)−
1 using the latest b and λ = 

0. 

Note that by choosing a large value of λ, the procedure will follow the direction of 

steepest descent (in a certain scale), a foolproof but inefficient way of minimizing a 

function. On the other hand, when λ is small (or zero), the procedure follows Newton’s 

technique for solving nonlinear equations - fast (quadratically) converging to the exact 

solution provided we are reasonably close to it (but going crazy otherwise). So, 

Levenberg-Marquardt is trying to be conservative when things are not going too well, 

and advance rapidly when zeroing in on a nearby solution. The possibility of reaching a 

local (i.e. ’false’) rather then global minimum is, in these cases, rather remote (normally, 

there is only one unique minimum); furthermore, one would readily notice it by graphing 

the results. 
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At this point, we may give (5.2) a slightly different interpretation: If we replace b0 

by the exact (albeit unknown) values of the parameters and b by our leastsquare 

estimators, the ei residuals become the actual εi errors, and the equation implies (using a 

somehow more sophisticated version of the large-sample theory): bb = b + (XTX)−
1XTε 

+ ... 

covariance matrix ofb indicating that b is an asymptotically unbiased estimator of b, 

with the variance- 

(XTX)−
1XT E[εεT]X(XTX)−

1 = σ2(XTX)−
1 

The best estimator of σ2 is, clearly 

 
The previous formulas apply, practically without change (we just have to replace x 

by x) to the case of more than one independent variable. So, the complexity of the 

problem (measured by the second dimension of X) depends on the number of 

parameters, not on the number of the independent variables - for the linear model, the 

two numbers were closely related, but now anything can happen. 

Example Assuming the following model 

 

and being given the following set of observations: 

xi 82 71 98 64 77 39 86 69 22 10 

yi .21 .41 .16 .43 .16 .49 .14 .34 .77 1.07 

56 64 58 61 75 86 17 62 8 

.37 .27 .29 .12 .24 .07 .64 .40 1.15 

we can find the solution using the following Maple program: 

> with(linalg): 

:= [seq( [1]/( 

[2] + [ ]) = 1..19)]: > X := 

augment(diff(f,b[1]),diff(f,b[2])): 

> b := [1 1]: 

)); 

:= 1 : 

> bs := evalm(b): 

> C := evalm(transpose(X)&*X): 

> for i to 2 do C[i,i] := C[i,i] ∗transpose(1 + λ) end do:(X)&*(y − 

f)): > b := evalm(b+ inverse(C)&* 

 
> b := evalm(bs): 
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After several iterations (due to our selection of initial values, we first have to bb2 = 10.7 

± 2.9. The two standard errors have been computed by an extrab ± increase λ a 

few times), the procedure converges to b1 = 21.6 2.6 and 

> for i to 2 do sqrt(inverse(C)[i,i]*evalm((y − f)& ∗ (y − f))/17) end do; It is also a 

good idea to display the resulting fit by: 

> with(plots): 

> pl1 := pointplot: 

 > pl2 := plot(b[1]/(b[2] + )

 = 6 100): 

> display 

This can also serve, in the initial stages of the procedure, to establish ’sensible’ values 

of b1 and b2, to be used as initial values of the iteration loop.  
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 Chapter 6 ROBUST REGRESSION 
In this chapter we return to discussing the simple linear model. 

When there is an indication that the εi’s are not normally distributed (by noticing 

several unusually large residuals - so called outliers), we can search for maximum-

likelihood estimators of the regression parameters using a more appropriate distribution. 

The two most common possibilities are the Laplace (double exponential) and Cauchy 

distribution.. Both of them (Cauchy in particular) tend to de-emphasize outliers and their 

influence on the resulting regression line, which is quite important when dealing with 

data containing the occasional crazy value. Procedures of this kind are called robust (not 

easily influenced by outliers). 

Laplace distribution 
We will first assume that εi are distributed according to a distribution with the following 

PDF.. 

 

for all real values of x (the exponential distribution with its mirror reflection). Since the 

distribution is symmetric, the mean is equal to 0 and standard deviation is equal to

 
The corresponding likelihood function, or better yet its logarithm, is then 

 

The  derivative is 

 

Making it equal to zero and solving for γ yields 

where βb0 and βb1 represent the solution to the other two normal equations,namely

 

Solving these is a rather difficult, linear-programming problem. We will bypass this by 

performing the minimization of 

 
graphically, with the help of Maple. 
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sample theory) which allows us to replace b . We thus get To find the mean and 

standard deviation of γ, we assume that n is large (large- 

which implies that  

(where the dots imply terms proportional to  , etc.), since 

 

γ is thus an asymptotically unbiased estimator of γ. 

Similarly, 

 Var(γ  

(the dots now imply terms proportional to , since 

 

To perform the same kind of analysis for our (graphical) estimators 

ofbβ0 and The standard deviation of γ is thus. 

β1, we first realize that these have been obtained by minimizing the sum of a specific 

function (say F) of the residuals: 

 

(in this case, F represents taking the absolute value, but we are better off by considering 

the general case). The two normal equations are thus 

 

Expanding the left hand side with respect to β0 and β1 at the exact (albeit un- 

known) values β0 and β1 yields: b b 

n 

We can easily solve for 

b 
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sponding expected value (this is kind of tricky here since F00 relates to the Dirac 

function), thus: 

 

since E[F00(εi)] = γ
1. Furthermore, based on E[F0(εi)] = 0, we can see that the β estimators 

are asymptotically unbiased. Their variance-covariance matrix equals 

since  

Example: In this example, we will generate our own data, using n = 25, β0 = 80, β1 = −2 

and σ = 10 (the Maple program calls the regression coefficients a and b): 

> with(linalg): with(stats): with(plots): 

> x := randvector(25,entries=rand(1..35)): 

>> y := [seq(80 − 2([∗x[xi][,yi]+[irandom]],i = 1..[25)])laplaced; [0,10]](1),i = 

1..25)]: pointplot([seq 

 > F :=

 ( ( 

[i] b[i]),i = 1 25) : 

,contours= 30); 

− . 
augment([seq(1,i = 1..25)],x): 

> g := F/25; g := 

11.30304097 

>for i to 2 do sqrt(inverse(transpose(X)& ∗ X)[i,i] ∗ gˆ2) end do; 

4.585200522 

0.2499498573 

> g∗sqrt15.98491383(2.); g∗sqrt(2./25); 

3.196982767 

Our estimates forwith the true values ofβ0 and β1 80are thusand 
−

85210)
.
±The,5but its 

error is less thanand
σ 

estimate of−2.25±0.2516,.0in good agreement± 3.2 2is not 
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thatstandard impressive (the exact value was errors, which we know to be quite 

feasible. 

Cauchy Case 
This time we will assume that the ε distribution is Cauchy, with the following PDF:

  
Note that this distribution has indefinite mean (even though its median is equal to 0), 

and infinite standard deviation (σ denoting its quartile deviation). The logarithm of the 

likelihood function is now 

 

Differentiating with respect to σ, we get 

 
Setting it to zero yields 

  (6.2) 

where 
ei ≡ yi − β0 − β1xi.

β0 and β1 derivatives equal to 0 results in 

Similarly, making the 

  (6.3) 

Maple in normally capable of solving these (nonlinear) equations for the three 

parameters, but we may have to help in the following way: Rather then asking it to solve 

(6.2) and (6.3) simultaneously, we first provide a rough estimate for σ, and solve (6.3) 

for β0 and β1 (it is always save to start with a large value of σ, which reduces this step to 

a simple regression). Using these values of β0 and β1, we ask Maple to solve (6.2) for σ. 

This cycle is repeated till convergence (σ, β0 and β1 no 

longer change). The results are of course our σ, β0 and β1 estimates. 

 To investigate the statistical properties of the three estimators (now consideredb b b 

as random variables, not the final values), we again expand the right hand sides of the 

normal equations at the exact values. We should now do it with all three equations, since 

F ≡ lnσ − ln(
σ2 + 

e2
i ) 

is a function of all three parameters. But it is easy to see that the resulting equations 

decouple eventually (since the partial derivative of F with respect to σ and si, namely 

, has, in our approximation, a zero expected value). 
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So it is quite legitimate to first expand (6.2), assuming that β0 and β1 are fixed: 

 (6.4) 

Since 

 

σ is clearly asymptotically unbiased. Furthermore, after dividing (6.4) by n, we 

may replace the second coeb fficient by its expected value 

thus:

  

This means that the variance of 

 n σ + εi 

Similarly, (6.1) now implies (since, assuming that σ is 

fixed): 

 

which demonstrates that β0 and β1 are asymptotically unbiased, having the fol- 

lowing variance-covariance matrixb T b T T T 
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4σ4(XTX)−
1XT E[F0F0 ]X(X X)−

1 = 2σ2(X X)−
1 ' 2σb2(X X)−

1 

Example: We will use the same parameters as in the previous example, except now the 

εi’s have the Cauchy distribution with σ = 3. The following Maple program does 

the job: 

> with(linalg): with(stats): with(plots): > x 

:=randvector(25,entries =rand(1..35)): 

>>pointploty := [seq(80([seq− 2([∗x[xi][,yi]+[irandom]],i = 1..[25)])cauchy; [0,3]](1),i = 

1..25)]: 

: 

> σ := 100: 

>fsolve({b = —1.979312306, a = 79.80522543}{F2,F3},{a = 60..100,b = −5.. − 

1}); 

>assign(%): σ :=’σ’: 

; 

:=augment([seq(1,i = 1..25)],x): 

>for i to 2 do sqrt(inverse(transpose(X)& ∗ X)[i,i] ∗ 2 ∗ σˆ2) end do; 

1.735026661 

0.09386891459 

> σ∗ sqrt0.9480741785(2./25); 

This time, we are getting 79.8±1.7 for β0, −1.979±0.094 for β1 andfsolve3.35±loop0.95 

for σ. Note that we had to iterate (about 4 times) through the to reach these values.  
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 Chapter 7 TIME SERIES 
In this chapter we study the possibility of the ε’s being correlated with one another. This 

would normally happen when x is time, and we take a y observation (something like a 

stock price) every day (month, year, etc.). We will assume a simple linear (or 

polynomial) relationship between x and y, but the ε’s are now generated by 

εi = α1εi−1 + α2εi−2 + ... + δi 

where α1, α2, ... are (unknown) constants, and δi are independent, normally distributed, 

with the mean of zero and standard deviation of σ. This is called the autoregressive 

model (for the ε’s). We will first look in detail at the simplest case of the 

Markov Model 
namely 

 εi = α1εi−1 + δi ≡ ρεi−1 + δi (7.1) 

A terminology note: When the εi’s were independent, they could be seen simply as a 

random independent sample of size n from N(0,σ). Now, when generated in this 

new, rather nontrivial manner, they constitute a so called stochastic process. There 

are several kinds of stochastic processes; the ones with an integer index (the time 

scale is discrete) and continuous state space (values of ε) are called time series. 

We will assume that this process (of generating the εi’s) is stationary, i.e. it started 

in a distant past (not just with our ε1), implying that the distribution of all the εi’s is the 

same (so is the correlation coefficient between any two consecutive εi’s, etc.). The 

process can be stationary only when the model parameters (ρ in this case) fall in a 

specific range (meeting conditions of stability). 

Under this assumption, we can establish that the εi’s remain normal with the mean 

of zero. We can also find their common variance by taking the variance of each side of 

(7.1): 

Var(ε) = ρ2Var(ε) + σ2 

(note that εi and δj are uncorrelated whenever i < j). This implies that 

 
Note that the result is finite and positive only when |ρ| < 1 (this is also the stability 

condition). 

To find the correlation coefficient between εi−1 and εi (the so called first serial 

correlation ρ1), we multiply (7.1) by εi−1 and take the expected value, getting: 

Cov(εi−1,εi) = ρVar(εi−1) Dividing by 

Var(ε) yields: 

ρ1 = ρ 

giving us a clear interpretation of our parameter ρ. 

Similarly, to establish the kth serial correlation, we multiply (7.1) by εi−k and take the 

expected value: 
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Cov(εi−k,εi) = ρCov(εi−k,εi−
1) 

Dividing by the common variance yields the following recurrence formula 

ρk = ρ · ρk−1 

which implies almost immediately that 

ρk = ρk 

This means that the variance-covariance matrix of ε1, ε2,....εn (and therefore of y1, y2, 

.... yn) is 

 
Luckily, this matrix has a rather simple (tri- diagonal) inverse: 

(check it out). Its determinant is equal to. 

To perform simple regression, we need to maximize the logarithm of the 

likelihood function, namely: 

 

This will yield the usual (weighted) estimators of β and σ2, but now we also need to 

estimate ρ, based on 

where  

or, equivalently, 

  (7.2) 

It is clear that, so solve for the maximum-likelihood estimators, one would have to 

iterate, e.g. start with ρ = 0 and do the ordinary regression, then use (7.2) to estimate ρ 
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and come back to estimating β and σ2 by the corresponding weighted regression, etc., 

until the estimators no longer change. 

We will not derive the standard error of each of these estimators (it would be fairly 

tricky - we would have to use the large-n approach). 

> x := [5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100]: 

> y := [126,114,105,108,95,102,101,95,83,71,75,93,102,84,62,67,63,55,21,20]: > 

pointplot([seq([x[i],y[i]],i = 1..20)]): 

> X := matrix(20,2): 

> for i to 20 do X[i,1] := 1; X[i,2] := x[i] od: 

> W := matrix(20,20,0): 

:= 0: 

ˆ2 

od: 

> W[1,1] := 1 : W[20,20] := 1: 

> beta := evalm(inverse(transpose(X)&*W&*X)&*transpose(X)&*W&*y); β := 

[130.0261406, —0.9337280922] 

> e := evalm(y − X&*beta): 

> var := evalm(e&*W&*e)/18; var := 

123.7606318 

: 

:= sum( [’ ’]ˆ2,’ ’= 2..19): 

> rho :=ρ := 0.5775786348fsolve(r = A/(B + var/(1 − rˆ2)),r); 

Note that, to get the solution, we had to iterate (repeat the execution of the last few 

lines, starting with redefining the elements of W). 

Yule Model 
The error terms are now generated by 

 εi = α1εi−1 + α2εi−2 + δi (7.3) 

where α1 and α2 are (unknown) constants, and δi are independent N(0,σ). Multiplying by 

εi−1, taking the expected value and dividing by Var(X) yields 

ρ1 = α1 + α2ρ1 

which implies that 

 

 (7.4) 

Similarly, multiplying (7.3) by − , taking the expected value and dividing by Var(X) 

results in the following recurrence formula for all the remaining serial correlation 

coefficients: 

ρk = α1ρk−1 + α2ρk−2 

(with the understanding that ρ0 ≡ 1). 



54 

Taking the variance of each side of (7.3) yields 

Var(ε) = α2
1Var(ε) + α2

2Var(ε) + 2α1α2Var(X)ρ1 + σ2 

With the help of (7.4), we can now solve for 

 
One can also show that the process is stable (stationary) if and only if all three factors 

in the denominator of the previous formula are positive. The logarithm of the likelihood 

function is now: 

 

where 

 
Setting the α1 derivative equal to 0 yields 

 

Similarly, using the α2 derivative, we get 

 

To a good approximation (when n is reasonably large), these can be replaced by 

: 

with(stats):with(linalg):with(plots): 

 > eps[1] := 1.63 ∗ epseps[[1]n]−−..7272∗∗epseps[[nn]+− 

1]+randomrandom[normald[normald[0,1]](1)[0,1]](1): : 

> eps[2] := 1.63 ∗ 

>random , 

> pointplot([seq([i,eps[i]],i = 1..n)]): 

 := sum( [ ] [

 + 2] = 1 2)/( 2): 

: 
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 := sum( [ ]ˆ2 = 1 )/n: 

> linsolve(matrix(2,2,[C,B,B,C]),[B,A]); [1.612192917, —

0.7481655896] 


